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Age-Related Degradation 

1. Physical aging, including the creep and relaxation of the 

matrix and fiber-matrix interphase; 

2. Chemical aging, controlled by the thermo-oxidative 

degradation of the matrix and fiber-matrix interphase; 

3. Micromechanical damage growth and failure  

High Temperature Composites & Aging 

Application Area 

< 350 C 



TOS is orthotropic and heterogeneous in Lamina 

Weight loss of constituents cannot be used for composite design 

Oxidation of Polymers and  Composites 
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Unit Cell 

Lamina 

Constituent Properties 

Lamina Parameters 

Laminate 

Response 
•  Diffusion/Sorption growth 

•  Laminate response prediction 

s(x,y,z,t) 

e(x,y,z,t) 

Fiber and 

Matrix 

•  Dij
c effective diffusivity 

•                       effective moduli 

•  Effective damage 

(spatial/temporal variation)  

ijij EE  ,

Layup/Stacking Sequence 

• Interface/interphase TOS 

degradation characterization 

• Orthotropic TOS response 

• Degradation mechanisms 

• Thermal-oxidative 

characterization 

• Hygrothermal degradation 

SIZING 

Goal: A Scalable Methodology  
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Optical Microscopy 
                        

   

       

Bright-Field Dark-field 

Fluorescence Differential Interference Contrast 

• Previously used 

techniques  

   (bright-field,  

 dark-field, 

fluorescence 

imaging)  unable to 

track oxidation 

growth in neat resin 

 

•  A new 

technique based 

on differences in 

index of 

refraction of 

oxidized and 

unoxidized 

regions is 

successful 

Tandon, et al 2011 



Oxidation Layer Characterization: Nano-indentation  
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• Oxidation transition zone between oxidized edge zone and specimen interior 

remains relatively constant for all aging times.  

• Significant increases in resin stiffness in oxidation layer. 

PMR-15 @ 3430C (6500F) 



Energy Dispersive Spectroscopy  
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• Chemical depth 

profiling using 

the Genesis 

elemental 

analysis 

software 

 

• Relative oxygen 

content is higher 

in the oxidized 

region  

 

• Distribution 

provides 

estimation of 

the extent of the 

oxidized region 
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Oxidation Layer Characterization: CT Scanning 
 

• CT scans show the damage and oxidation layer sides in the specimen 

• Oxidation layer thickness can be correlated to those obtained from other 

techniques 

• Crack length and density can be determined throughout the entire specimen 

Exposed Surface 

Picture-frame Oxidation inside 

PMR-15 aged for 3112 hrs 



Validation of Optical Microscopy Technique for 

Damage Assessment  

3000 hr 

@ 450oF 

X-ray imaging of cracks 

 Fluorescence imaging of cracks 

Edge Center 

• Polished discrete section is representative of the damage behavior in the interior 

• Similar damage growth and distribution observed 



Mechanisms of Oxidative Degradation 

12 
[1] Pochiraju and Tandon, JEMT, 2006; [2] Tandon, Pochiraju, Schoeppner, PDS 2006 

Oxidative Degradation 

µcrack 

Oxidation 

•Phase I: Exposure and boundary sorption 
 

•Phase II: Heterogeneity in diffusivity induces 

anisotropic oxidation 
 

•Phase III: Conversion into oxide products induces 

oxidation-driven strain and damage evolution 
 

•Phase IV:  Newly formed surfaces promotes 

diffusion 

© 2012 Stevens Institute of Technology.  All Rights Reserved. 



Coupled Oxidation-Damage Mechanisms 



Oxidation Model 
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f: represents the oxidation state 

Pochiraju et al., 2006 



Modeling Thermo-Oxidation of Polymers 
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Diffusion-Reaction System 
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Oxidative Layer Growth in PMR-15 
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Pochiraju, Tandon, Schoeppner, JEMT 2006 



Stress-Coupled Diffusion-Reaction Modeling 

REACTION OR 

CONSUMPTION TERM 

Stress-coupled Diffusivity and  RATE OF CHANGE OF 

O2  CONCENTRATION 









=

RT

E
DD a

ijij exp0

Boundary Sorption = Solubility  Partial Pressure O2    CS = SPO2
 

Periodic/Symmetric Boundary conditions   C. n = 0 

Diffusivity Assumed to obey Arrhenius Law   



Oxidation in the Vicinity of Cracks 
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Oxidation growth at the crack tip in BMI resins 

Oxidation thickness vs. orientation angle 

Angular variation of stress correlates 

to the oxidation depth around cracks 
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197 hr 

0º 

407 hr 

1200 hr 

Unidirectional G30-500/PMR-15 

aged at 288ºC 

• Oxidized resin becomes lighter in 

color 

• Development and growth of voids 

and microcracks into surface 

• Preferential oxidation in axial 

direction 

Typical of neat resin and 

in cross-section 

transverse to fiber 

direction 



0o 

Both Oxidation 

Growth and damage 

propagation are 

Orthotropic  

 

Penetrates deeper 

into the laminate 

along fiber direction 
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Fiber Direction 

Fiber Orientation Dependent Oxidation 
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Heterogeneous Laminate Behavior 

Cross-ply laminate, [0/90]4s 
View is of cross-section perpendicular to 0º direction 

• Preferential oxidation growth along the fiber paths for the cross-ply laminate  

• Maximum/minimum oxidation extent occur at the plies midplane  

Tandon & Pochiraju (2010) J. Composite Materials 



Oxidation of Laminates 

 

[0/90]4s [0/45/-45/90]2s 
[0]16t 

Parallel to 0 degree direction 

750 hr 

• Short fiber matrix debonds along the 0º fiber direction  

• Oxidation has advanced to a greater extent in the region of the specimen  

   corresponding to the location of the debond cracks  



Modeling  Oxidation of Laminates (No Damage) 

• Anisotropy can be effectively modeled in areas without damage 

• Requires 3D simulations and orthotropic diffusivity tensor 

• Most effects are confined to adjacent plies 

Tandon & Pochiraju, JCM, 2011 
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Aged at 288 oC  405 Hours 

Optical Micrograph Fluoroscopic Image 

Optical and Fluoroscopic Imaging 

Fiber  

Orientation 



  1500 hr 

2250 hr 

1500 hr 

2250 hr 

[0/ ± 45/90] 2S [0/90] 4S 

 

45 

90 º 

 º 

0 º 

0 º 

45 º 

º 

1500 hr 

2250 hr 

1500 hr 

2250 hr 

[0/ ± 45/90] 2S [0/90] 4S 

º 90 º 

90 º 

45 º 

0 º 

0 º 

0 º 

0 º 

Thermal-Oxidation in Laminates 



Coupled Oxidation-Damage Scheme 



Oxidation induces Shrinkage Strains 
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 Evolution of Stress During Oxidative Aging 

200 hrs 

• Oxidation Layer (Left) and 
stress fields (right) after 10 
Hours of aging. 

•  The peak Von Mises effective 
stresses (2.4 MPa)  are at the 
fiber matrix interface and free 
edge (below)  

• Average interstitial matrix 
stresses are at 0.4 MPa and in 
fiber is 2.4 MPa 

• Oxidation Layer (left) shown 
at 200 hours  

•  Peak stress on the free edge  
is 47.3 MPa 

• Average interstitial matrix 
stresses are at 1.2 MPa 

• Average fiber stress = 25 MPa 
• Matrix strength ~ 41MPa 

@288 C 

10 hrs 
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Coupled Oxidation & Damage Model 

O2 t 



Oxidation and Damage States in a Lamina 

f f 

Along the fiber (axial) Transverse to fiber (axial) 

d 

Time = 900 Hrs Time = 1700 Hrs 

d 

Fiber  

direction 

Fibers  

Low Toughness – Faster Crack/oxidation growth 

Liang & Pochiraju, 2014 
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Oxidation and damage evolution simulation  

for a G30/PMR-15 lamina in the axial (fiber) direction 

Axial Oxidation and Damage Growth 

Fiber Direction Liang & Pochiraju, JCM, 2014 



T=300 hrs T=600 hrs T=800 hrs T=900 hrs T=1100 hrs 

OXD State DMG state d OXD state DMG state d OXD state DMG state d OXD state DMG state d OXD state DMG state d 

S11 (MPa) S22(MPa) S11 (MPa) S22 (MPa) S11 (MPa) S22 (MPa) S11 (MPa) S22 (MPa) S11 (MPa) S22 (MPa) 

E11 E22 E11 E22 E11 E22 E11 E22 E11 E22 
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Axial Oxidation and Damage Growth 
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Transverse Oxidation and Damage Growth 

Oxidation and damage evolution simulation  

for a G30/PMR-15 lamina in the transverse direction 



T=500 hrs T=1100 hrs T=1300 hrs T=1500 hrs T=1900 hrs 

OXD State DMG state d OXD state DMG state d OXD state DMG state d OXD state DMG state d OXD state DMG state d 

S22 (MPa) S33(MPa) S22 (MPa) S33 (MPa) S22 (MPa) S33 (MPa) S22 (MPa) S33 (MPa) S22 (MPa) S33 (MPa) 

E22 E33 E22 E33 E22 E33 E22 E33 E22 E33 
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Transverse Oxidation and Damage Grwoth 



Coating Morphology  & Materials 

Dense Metal Thin Film 

Interphase 
Interlayer 

Nan, Tandon & Pochiraju, 2012  



Bismaleimide with Ag Coating  

with Cr interlayer < 10 nm 

Average coating thickness 1.76 ± 0.26 mm 

BMI IM7/BMI 



Oxidation Layer Characterization  
 Chemical Depth Profiling with EDAX 

• Ratio of Oxygen to Carbon is monitored through the depth 

• Fully oxidized regions have considerably higher ratio 

• Oxidation layer size can be quantitatively measured.  
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Performance of Various Coating Materials 

• Effectiveness correlates to the durability of the interface. 

• Surface roughness did not provide additional mechanical bond strength or durability 

• Between reactive metals  - Cr bond layer is relatively more effective than Al. 



Surface Damage Observations in  
T650-35/MVK-14 8HSW Textile Composites 

Lab Air, 15 Psi 

Argon 

Lab Air, 75 psi 

1250 hr 

Little damage in argon, while increase in surface crack density under elevated pressure 



Concluding Remarks 

• Coupling effects for Oxidation-on-Damage evolution 
(though material response changes) and Damage-on-
Oxidation ( creation of new surfaces) have been 
captured.  

• What’s next?  

– Life prediction requires “careful” acceleration of 
“degradation”   
• Reduce scale of the specimens?  

• Not much room for temperature acceleration, pressure 
acceleration?  

• Analyze, characterize and control slow chemical degradation 
process?  

• New and novel structure visualization techniques, preferably non-
destructive 

 



Questions? 
 or e-mail:  Kishore.pochiraju@stevens.edu 


